
1 - 5 Similar matrices have equal eigenvalues
Verify this for A and A = P-−1A P. If y is an eigenvector of P, show that x = P y are eigen-
vectors of A. 

(The object P-−1A P will be frequently employed as one gooey mass, so I’ll refer to it as the 
melange.) 

1. A =  3 4
4 -−3

, P =  -−4 2
3 -−1



ClearAll["Global`*⋆"]

AA =  3 4
4 -−3



{{3, 4}, {4, -−3}}

PP =  -−4 2
3 -−1



{{-−4, 2}, {3, -−1}}

e1 = Inverse[PP]


1

2
, 1, 

3

2
, 2

e2 = e1.AA.PP

{{-−25, 12}, {-−50, 25}}

e3 = {vals, vecs} = Eigensystem[e2]

{{-−5, 5}, {{3, 5}, {2, 5}}}

e4 = {vals, vecs} = Eigensystem[PP]


1

2
-−5 -− 33 ,

1

2
-−5 + 33 , 

1

6
-−3 -− 33 , 1, 

1

6
-−3 + 33 , 1

e5 = {vals, vecs} = Eigensystem[AA]

{{-−5, 5}, {{-−1, 2}, {2, 1}}}

Above: Some basic declarations and calculations to set up the problem. The spectrum 
matches the text answer, i.e. I have that the eigenvalues of the melange equal the eigenval-
ues of AA. 



e14 = e1.{-−1, 2}


3

2
,
5

2


e15 = e2.
3

2
,
5

2
 ⩵ -−5 

3

2
,
5

2


True

e16 = e1.{2, 1}

{2, 5}

e17 = e2.{2, 5} ⩵ 5 {2, 5}

True

Above. This confirms the second half of Theorem 3, sec 8.4, p. 340. I know the theorem 
states that eigenvectors of aA are good with the melange (after being dotted with 
Inverse[pP]), but not the other way round. The other way round is what this problem 
instruction is trying to establish. Is it enforceable?
e19 = PP.{3, 5}

{-−2, 4}

e20 = AA.e19 ⩵ -−5 e19

True

e21 = PP.{2, 5}

{2, 1}

e22 = AA.e21 ⩵ 5 e21

True

Above: Okay, it works. That explains where those x vectors in the answer came from. The 
eigenvectors from the melange work when dotted with pP.

3. A =  8 -−4
2 2

, P =  0.28 0.96
-−0.96 0.28



ClearAll["Global`*⋆"]

aA =  8 -−4
2 2



{{8, -−4}, {2, 2}}

pP =  0.28 0.96
-−0.96 0.28



{{0.28, 0.96}, {-−0.96, 0.28}}
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e1 = Inverse[pP]

{{0.28, -−0.96}, {0.96, 0.28}}

e2 = e1.aA.pP

{{3.008, -−0.544}, {5.456, 6.992}}

e3 = {vals, vecs} = Eigensystem[aA]

{{6, 4}, {{2, 1}, {1, 1}}}

e4 = {vals, vecs} = Eigensystem[e2]

{{6., 4.}, {{0.178885, -−0.98387}, {-−0.480833, 0.876812}}}

Above: aA and the melange share eigenvalues.

e5 = {vals, vecs} = Eigensystem[pP]

{{0.28 + 0.96 ⅈ, 0.28 -− 0.96 ⅈ},
{{0.707107 + 0. ⅈ, 0. + 0.707107 ⅈ}, {0.707107 + 0. ⅈ, 0. -− 0.707107 ⅈ}}}

e6 = e1.{2, 1}

{-−0.4, 2.2}

e7 = e2.e6 ⩵ 6 e6

True

e8 = e1.{1, 1}

{-−0.68, 1.24}

e9 = e2.e8 ⩵ 4 e8

True

Above, e6 through e9: eigenvectors of aA, after being dotted with Inverse[pP], work as 
eigenvectors of the melange.
e10 = pP.{0.17888543819998307`, -−0.9838699100999075`}

{-−0.894427, -−0.447214}

e11 = aA.e10 ⩵ 6 e10

True

e12 = pP.{-−0.48083261120685233`, 0.8768124086713189`}

{0.707107, 0.707107}
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e13 = aA.e12 ⩵ 4 e12

True

Above, e10 through e13: eigenvectors of the melange, after being dotted with pP, work as 
eigenvectors of aA.

5. A =
-−5 0 15
3 4 -−9
-−5 0 15

, P =
0 1 0
1 0 0
0 0 1

ClearAll["Global`*⋆"]

aA =
-−5 0 15
3 4 -−9
-−5 0 15

{{-−5, 0, 15}, {3, 4, -−9}, {-−5, 0, 15}}

pP =
0 1 0
1 0 0
0 0 1

{{0, 1, 0}, {1, 0, 0}, {0, 0, 1}}

e1 = Inverse[pP]

{{0, 1, 0}, {1, 0, 0}, {0, 0, 1}}

e2 = e1.aA.pP

{{4, 3, -−9}, {0, -−5, 15}, {0, -−5, 15}}

e3 = {vals, vecs} = Eigensystem[aA]

{{10, 4, 0}, {{1, -−1, 1}, {0, 1, 0}, {3, 0, 1}}}

e4 = {vals, vecs} = Eigensystem[pP]

{{-−1, 1, 1}, {{-−1, 1, 0}, {0, 0, 1}, {1, 1, 0}}}

e5 = {vals, vecs} = Eigensystem[e2]

{{10, 4, 0}, {{-−1, 1, 1}, {1, 0, 0}, {0, 3, 1}}}

Above: it is seen that aA and the melange share the same eigenvalues, {10, 4, 0}.
e6 = e1.{1, -−1, 1}

{-−1, 1, 1}

e7 = e2.e6 ⩵ 10 e6

True
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e8 = e1.{0, 1, 0}

{1, 0, 0}

e9 = e2.e8 ⩵ 4 e8

True

e10 = e1.{3, 0, 1}

{0, 3, 1}

e11 = e2.e10 ⩵ 0 e10

True

Above, e6 through e11: it is seen that the eigenvectors of aA work as eigenvectors for the 
melange if first dotted with Inverse[pP].
e12 = pP.{-−1, 1, 1}

{1, -−1, 1}

e13 = aA.e12 ⩵ 10 e12

True

e14 = pP.{1, 0, 0}

{0, 1, 0}

e15 = aA.e14 ⩵ 4 e14

True

e16 = pP.{0, 3, 1}

{3, 0, 1}

e17 = aA.e16 ⩵ 0 e16

True

Above, e12 through e17: it is seen that the eigenvectors of the melange work as eigenvec-
tors for aA if first dotted with pP.

9 - 16 Diagonalization of matrices
Find an eigenbasis (a basis of eigenvectors) and diagonalize.

9.  1 2
2 4



Example 4 on p. 342 shows how to get this done.
ClearAll["Global`*⋆"]
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aA =  1 2
2 4



{{1, 2}, {2, 4}}

Find the eigenvectors
e1 = {vals, vecs} = Eigensystem[aA]

{{5, 0}, {{1, 2}, {-−2, 1}}}

Make a matrix of a couple of the eigenvectors, think of this as P from above

e2 =  1 -−2
2 1



{{1, -−2}, {2, 1}}

Get the inverse of the eigenvector matrix, this will be P#
e4 = Inverse[e2]


1

5
,
2

5
, -−

2

5
,
1

5


Then muliply to make a conglomerate.
e4.aA.e2

{{5, 0}, {0, 0}}

Above: This is what I need. It is already diagonalized. The answer agrees with the text.

11.  -−19 7
-−42 16



ClearAll["Global`*⋆"]

e1 =  -−19 7
-−42 16



{{-−19, 7}, {-−42, 16}}

e2 = {vals, vecs} = Eigensystem[e1]

{{-−5, 2}, {{1, 2}, {1, 3}}}

e3 =  1 1
2 3



{{1, 1}, {2, 3}}

e4 = Inverse[e3]

{{3, -−1}, {-−2, 1}}
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e5 = e4.e1.e3

{{-−5, 0}, {0, 2}}

Det[e5]

-−10

e6 = {{2, 0}, {0, -−5}}

{{2, 0}, {0, -−5}}

Det[e6]

-−10

Eigenvalues[e5]

{-−5, 2}

Eigenvalues[e6]

{-−5, 2}

Above: Mathematica has found e5 as the answer, but the text shows e6. e5 and e6 have the 
same determinant, trace, and eigenvalues, and I suspect they are similar. However, I do not 
know how to find P such that e6=P-−1.e5.P, so I can’t take a green.

13.
4 0 0
12 -−2 0
21 -−6 1

ClearAll["Global`*⋆"]

e1 =
4 0 0
12 -−2 0
21 -−6 1

{{4, 0, 0}, {12, -−2, 0}, {21, -−6, 1}}

e2 = {vals, vecs} = Eigensystem[e1]

{{4, -−2, 1}, {{1, 2, 3}, {0, 1, 2}, {0, 0, 1}}}

e3 =
1 0 0
2 1 0
3 2 1

{{1, 0, 0}, {2, 1, 0}, {3, 2, 1}}

e4 = Inverse[e3]

{{1, 0, 0}, {-−2, 1, 0}, {1, -−2, 1}}
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e5 = e4.e1.e3

{{4, 0, 0}, {0, -−2, 0}, {0, 0, 1}}

Above: The looked-for diagonalized matrix. The text answer agrees.

15.
4 3 3
3 6 1
3 1 6

ClearAll["Global`*⋆"]

e1 =
4 3 3
3 6 1
3 1 6

{{4, 3, 3}, {3, 6, 1}, {3, 1, 6}}

e2 = {vals, vecs} = Eigensystem[e1]

{{10, 5, 1}, {{1, 1, 1}, {0, -−1, 1}, {-−2, 1, 1}}}

e3 =
1 0 -−2
1 -−1 1
1 1 1

{{1, 0, -−2}, {1, -−1, 1}, {1, 1, 1}}

e4 = Inverse[e3]


1

3
,
1

3
,
1

3
, 0, -−

1

2
,
1

2
, -−

1

3
,
1

6
,
1

6


e5 = e4.e1.e3

{{10, 0, 0}, {0, 5, 0}, {0, 0, 1}}

Above: another similar-looking lookalike. The text gives the answer 
{{10,0,0},{0,1,0},{0,0,5}}.
e6 = {{10, 0, 0}, {0, 1, 0}, {0, 0, 5}}

{{10, 0, 0}, {0, 1, 0}, {0, 0, 5}}

Det[e5]

50

Det[e6]

50

Eigenvalues[e5]

{10, 5, 1}
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Eigenvalues[e6]

{10, 5, 1}

Tr[e5]

16

Tr[e6]

16

Again, I can’t prove they are similar, but with three common qualities, it’s strongly 
suggestive.

17 - 23 Principal axes. Conic sections
What kind of conic section (or pair of straight lines) is given by the quadratic form? 
Transform it to principal axes. Express x" = {x1, x2} in terms of the new coordinate vector 
y" = {y1, y2} , as in example 6, p. 344.

17.  7 x12 + 6 x1 x2 + 7 x22 = 200

ClearAll["Global`*⋆"]

e1 = 7 x12 + 6 x1 x2 + 7 x22 == 200

7 x12 + 6 x1 x2 + 7 x22 ⩵ 200

e2 =  7 3
3 7



{{7, 3}, {3, 7}}

Above: The text answer identifies the matrix as C.
e3 = {x1, x2}

{x1, x2}

e4 = e3.e2.e3

x1 (7 x1 + 3 x2) + x2 (3 x1 + 7 x2)

e5 = Expand[e4]

7 x12 + 6 x1 x2 + 7 x22

e6 = {vals, vecs} = Eigensystem[e2]

{{10, 4}, {{1, 1}, {-−1, 1}}}

Above: according to example 6, p. 344, numbered line (10) on p 343 becomes:
e7 = 10 y12 + 4 y22

10 y12 + 4 y22

8.4 Eigenbases. Diagonalization. Quadratic Forms 339.nb     9



And further,
e8 = e7 ⩵ 200

10 y12 + 4 y22 ⩵ 200

Above: the equation is the same as in the text, except numbering of constants is reversed.

e9 = e8 /∕. 10 y12 + 4 y22 →
10 y12

200
+
4 y22

200
, 200 → 1

y12

20
+
y22

50
⩵ 1

Above: this is the line where the type of conic section is identified. Here there are different 
coefficients to the squared terms, and the signs are the same. This identifies an ellipse.
e10 = e2 -− 10 IdentityMatrix[2]

{{-−3, 3}, {3, -−3}}

Above: the part of example 6, p. 344 where normalized eigenvectors are calculated.
e11 = Thread[e10.e3 ⩵ 0]

{-−3 x1 + 3 x2 ⩵ 0, 3 x1 -− 3 x2 ⩵ 0}

e12 = Solve[e11]

{{x2 → x1}}

e16 = {1, 1}

{1, 1}

Above: the components of the first eigenvector have been calculated.
e13 = e2 -− 4 IdentityMatrix[2]

{{3, 3}, {3, 3}}

e14 = Thread[e13.e3 ⩵ 0]

{3 x1 + 3 x2 ⩵ 0, 3 x1 + 3 x2 ⩵ 0}

e15 = Solve[e14]

{{x2 → -−x1}}

Above: This looks good. However, the vectors are supposed to be orthonormal.  They need 
to be normalized.
e16n = Normalize[e16]


1

2
,

1

2

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e17 = {1, -−1}

{1, -−1}

e17n = Normalize[e17]


1

2
, -−

1

2


e18 =

1

2

1

2
1

2
-− 1

2


1

2
,

1

2
, 

1

2
, -−

1

2


Above: the matrix of eigenvectors is put together by hand.
e19 = {y1, y2}

{y1, y2}

e20 = Thread[e18.e19 ⩵ e3]


y1

2
+

y2

2
⩵ x1,

y1

2
-−

y2

2
⩵ x2

This mostly matches the text. Perhaps the rotation would be opposite to the text. In 
Wikipedia is an article on the Principal axis theorem, which was of use.

ParametricPlot 20 Cos[t] Cos
π

4
 -− 50 Sin[t] Sin

π

4
,

20 Cos[t] Sin
π

4
 + 50 Sin[t] Cos

π

4
,

{t, 0, 2 π}, ImageSize → 200, PlotStyle → Thickness[0.003]

-−6 -−4 -−2 2 4 6

-−6

-−4

-−2

2

4

6

Above: Would this be it, or would it go the other way? If I had to label x1 and x2 axes, 
which would be which?
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ContourPlot7 x12 + 6 x1 x2 + 7 x22 ⩵ 200, {x1, -−10, 10},

{x2, -−10, 10}, ImageSize → 200, ContourStyle → Thickness[0.003]

-−10 -−5 0 5 10
-−10

-−5

0

5

10

Above: Bravo home team.

19. 3 x12 + 22 x1 x2 + 3 x22 = 0

ClearAll["Global`*⋆"]

e1 =  3 11
11 3



{{3, 11}, {11, 3}}

Above: The matrix identified in the text answer.
e2 = {x1, x2}

{x1, x2}

e3 = e2.e1.e2

x2 (11 x1 + 3 x2) + x1 (3 x1 + 11 x2)

e4 = Expand[e3]

3 x12 + 22 x1 x2 + 3 x22

e5 = {vals, vecs} = Eigensystem[e1]

{{14, -−8}, {{1, 1}, {-−1, 1}}}

Below: According to example6, p. 344, expression (10) on p 343 becomes
e6 = 14 y12 -− 8 y22

14 y12 -− 8 y22

Below: and further,
e7 = 14 y12 -− 8 y22 ⩵ 0

14 y12 -− 8 y22 ⩵ 0

Above: this is the line where the type of conic section is identified. The signs on the squared 
terms are opposite, which would normally indicate a hyperbola. However, the equation is 
equal to zero, and I guess that’s what makes it a pair of lines. The equation appears in the 
text answer.
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Above: this is the line where the type of conic section is identified. The signs on the squared 
terms are opposite, which would normally indicate a hyperbola. However, the equation is 
equal to zero, and I guess that’s what makes it a pair of lines. The equation appears in the 
text answer.
e8 = e1 -− 14 IdentityMatrix[2]

{{-−11, 11}, {11, -−11}}

Above: the part of example 6, p. 344 where normalized eigenvectors are calculated.
e9 = Thread[e8.e2 ⩵ 0]

{-−11 x1 + 11 x2 ⩵ 0, 11 x1 -− 11 x2 ⩵ 0}

e10 = Solve[e9]

{{x2 → x1}}

e11 = {1, 1}

{1, 1}

e12 = Normalize[e11]


1

2
,

1

2


Above: one normalized vector down, one to go.
e13 = e1 + 8 IdentityMatrix[2]

{{11, 11}, {11, 11}}

e14 = Thread[e13.e2 ⩵ 0]

{11 x1 + 11 x2 ⩵ 0, 11 x1 + 11 x2 ⩵ 0}

e15 = Solve[e14]

{{x2 → -−x1}}

e16 = {1, -−1}

{1, -−1}

e17 = Normalize[e16]


1

2
, -−

1

2


Above: both normalized eigenvectors have been found.
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e18 =

1

2

1

2
1

2
-− 1

2


1

2
,

1

2
, 

1

2
, -−

1

2


Above: the matrix of eigenvectors is put together by hand. The expression appears in the 
text.
e19 = {y1, y2}

{y1, y2}

e20 = Thread[e18.e19 == e2]


y1

2
+

y2

2
⩵ x1,

y1

2
-−

y2

2
⩵ x2

Above: it looks like something has a 45 degree rotation. But it is not an ellipse. This time 
the answers match the text well. The text says pair of straight lines, which is obvious, since 
all factors are linear.

ContourPlot3 x12 + 22 x1 x2 + 3 x22 ⩵ 0, {x1, -−50, 50},

{x2, -−50, 50}, ImageSize → 200, ContourStyle → Thickness[0.003]

-−40 -−20 0 20 40

-−40

-−20

0

20

40

Above: with new tool, ContourPlot, the plot is easily executed.

21. x12 -− 12 x1 x2 + x22 = 70

ClearAll["Global`*⋆"]

I am at example 6, p. 344. The coefficients for the squared terms are equal here as in exam-
ple 6, and they make up the diagonal. The x1 x2 term is divided in half and makes up the off-
diagonal ‘corners’ of the matrix.
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e1 =  1 -−6
-−6 1



{{1, -−6}, {-−6, 1}}

Above: The matrix C is identified as per the text. 
e2 = {x1, x2}

{x1, x2}

Below: The polynomial equation’s coefficients are made from the above matrix, the 1 and 
the 6.

Solve(1 -− λ)2 -− (6)2 == 0, λ

{{λ → -−5}, {λ → 7}}

And the polynomial is readily available as
e7 = 7 y12 -− 5 y22 == 70

7 y12 -− 5 y22 ⩵ 70

Above: this is the line where the type of conic section is identified. The squared factors 
differ in sign, and the sum is greater than zero. Hence it is a hyperbola. It agrees with text.

Below: beginning the part of example6, p. 344 where normalized eigenvectors are calcu-
lated based on
(A-λ I)x=0, and for this case λ1 = 7 and λ2 = -5.

So,
e8 = e1 -− 7 IdentityMatrix[2]

{{-−6, -−6}, {-−6, -−6}}

e9 = Thread[e8.e2 ⩵ 0]

{-−6 x1 -− 6 x2 ⩵ 0, -−6 x1 -− 6 x2 ⩵ 0}

e10 = Solve[e9]

{{x2 → -−x1}}

e11 = {1, -−1}

{1, -−1}

e12 = Normalize[e11]


1

2
, -−

1

2


Above: one normalized eigenvector down, one to go.
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e13 = e1 + 5 IdentityMatrix[2]

{{6, -−6}, {-−6, 6}}

e14 = Thread[e13.e2 ⩵ 0]

{6 x1 -− 6 x2 ⩵ 0, -−6 x1 + 6 x2 ⩵ 0}

e15 = Solve[e14]

{{x2 → x1}}

e16 = {1, 1}

{1, 1}

e17 = Normalize[e16]


1

2
,

1

2


Above: both normalized eigenvectors have been found.

e18 =

1

2

1

2

-− 1

2

1

2


1

2
,

1

2
, -−

1

2
,

1

2


Above: the matrix of eigenvectors is put together by hand.
e19 = {y1, y2}

{y1, y2}

Following the wind-up section of example 6, and fetching the appropriate vectors connoting 
x1, x2, y1, y2 ,
e20 = Thread[e18.e19 ⩵ e2]


y1

2
+

y2

2
⩵ x1, -−

y1

2
+

y2

2
⩵ x2

The parametric version of the hyperbola in e7 would be x = 2
70

secant t, y = 5
70

tangent t.
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ParametricPlot
2

70
Sec[t] Cos

π

4
 -−

5

70
Tan[t] Sin

π

4
,

2

70
Sec[t] Sin

π

4
 +

5

70
Tan[t] Cos

π

4
,

{t, 0, 2 π}, ImageSize → 200, PlotStyle → Thickness[0.003]

-−1.0 -−0.5 0.5 1.0

-−1.0

-−0.5

0.5

1.0

Above: the plot shows the sign differences for multiple angle formula, I think. But does not 
take into account the sign differences for the problem equation. Those are tried out below:

ParametricPlot
2

70
Sec[t] Cos-−

π

4
 -−

5

70
Tan[t] Sin-−

π

4
,

2

70
Sec[t] Sin-−

π

4
 +

5

70
Tan[t] Cos-−

π

4
,

{t, 0, 2 π}, ImageSize → 200, PlotStyle → Thickness[0.003]
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-−1.0

-−0.5

0.5

1.0

Above: playing with the signs makes it come out looking more like it should.
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ContourPlotx12 -− 12 x1 x2 + x22 ⩵ 70, {x1, -−50, 50},

{x2, -−50, 50}, ImageSize → 200, ContourStyle → Thickness[0.003]
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-−40

-−20

0

20

40

23. -− 11 x12 + 84 x1 x2 + 24 x22 = 156

ClearAll["Global`*⋆"]

e1 =  -−11 42
42 24



{{-−11, 42}, {42, 24}}

Above: the matrix C is identified and agrees with the text. Here I see the important differ-
ence made when the coefficients of the two squared terms are not equal. They both occupy 
the diagonal in their own identity.
e2 = {x1, x2}

{x1, x2}

From this point down to the next green cell, the ground covered is not exactly by shortcut 
by way of example 6, as it was in the procedure in problem 21.
e3 = e2.e1.e2

x2 (42 x1 + 24 x2) + x1 (-−11 x1 + 42 x2)

e4 = Expand[e3]

-−11 x12 + 84 x1 x2 + 24 x22

e5 = {vals, vecs} = Eigensystem[e1]

{{52, -−39}, {{2, 3}, {-−3, 2}}}

Below: According to example 6 on p. 344, expression (10), p. 343 becomes
e6 = 52 y12 -− 39 y22

52 y12 -− 39 y22

Below: and further,
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e7 = e6 ⩵ 156

52 y12 -− 39 y22 ⩵ 156

Above: this is the line where the type of conic section is identified. The squared factors 
differ in sign, making it a hyperbola. It matches the equation in the text answer.
e8 = e1 -− 52 IdentityMatrix[2]

{{-−63, 42}, {42, -−28}}

e9 = Thread[e8.e2 ⩵ 0]

{-−63 x1 + 42 x2 ⩵ 0, 42 x1 -− 28 x2 ⩵ 0}

e10 = Solve[e9]

x2 →
3 x1

2


e11 = {1, 3 /∕ 2}

1,
3

2


e12 = Normalize[e11]


2

13
,

3

13


Above: one normalized eigenvector down, one to go.
e13 = e1 + 39 IdentityMatrix[2]

{{28, 42}, {42, 63}}

e14 = Thread[e13.e2 ⩵ 0]

{28 x1 + 42 x2 ⩵ 0, 42 x1 + 63 x2 ⩵ 0}

e15 = Solve[e14]

x2 → -−
2 x1

3


e16 = 1, -−
2

3


1, -−
2

3


e17 = Normalize[e16]


3

13
, -−

2

13


Above: both normalized eigenvectors have been found.
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e18 =

2

13

3

13
3

13
-− 2

13


2

13
,

3

13
, 

3

13
, -−

2

13


Above: the matrix of eigenvectors is put together by hand. It matches the matrix shown in 
the text answer.
e19 = {y1, y2}

{y1, y2}

e20 = Thread[e18.e19 ⩵ e2]


2 y1

13
+

3 y2

13
⩵ x1,

3 y1

13
-−

2 y2

13
⩵ x2

The parametric version of the hyperbola in e7 would be 

x = 52
156 secant t, y = 39

156 tangent t.

ParametricPlot
52

156
Sec[t] Cos

2

13
 -−

39

156
Tan[t] Sin

3

13
,

52

156
Sec[t] Sin

3

13
 +

39

156
Tan[t] Cos-−

2

13
,

{t, 0, 3 π}, ImageSize → 200, PlotStyle → Thickness[0.003]

-−2 -−1 1 2

-−4

-−2

2

4
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ContourPlot-−11 x12 + 84 x1 x2 + 24 x22 ⩵ 156, {x1, -−50, 50},

{x2, -−50, 50}, ImageSize → 200, ContourStyle → Thickness[0.003]
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Above: evidently there is quite a way to go to understanding the principal axis theorem 
correctly.
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